Plant 3 Controls & Automation Upgrade Assessment

Executive Review Meeting - Technical Assessment Deliverable

Prepared By: Mike Chen, Controls Integration Manager

Date: August 15, 2025

Executive Review Meeting: August 28, 2025 **Distribution:** Operations Leadership Team

Executive Summary

Plant 3 faces critical automation infrastructure challenges that require immediate action to maintain production reliability and competitiveness. Legacy systems are approaching end-of-life with vendor support terminating in December 2025, creating significant business risk. The recommended \$515K-\$665K phased upgrade will improve Overall Equipment Effectiveness from 94.2% to 97%+, eliminate 4 hours of daily manual processes, and reduce maintenance burden by 50%.

Bottom Line: This upgrade is essential for operational continuity and will deliver measurable ROI through improved uptime, reduced labor costs, and enhanced production efficiency.

1. Current State Analysis

Automation Infrastructure Overview

Primary Control Systems

- 4x Allen-Bradley ControlLogix 5580 PLCs (2019) GOOD CONDITION
- 2x Allen-Bradley SLC 5/05 PLCs (2011) CRITICAL END-OF-LIFE RISK
- Wonderware System Platform 2017 R2 SCADA FUNCTIONAL BUT AGING
- 6x Mixed-vintage HMI operator panels PERFORMANCE ISSUES

Current Performance Metrics

Automation System Uptime: 94.2% (Target: 97%+)

• SCADA Availability: 97.8%

HMI Response Time: 2.3 seconds (Target: <1.5 seconds)

Unplanned Downtime Events: 23 incidents in Q2

• Automation-Related Production Loss: 1.8% of total production time

Critical Bottlenecks Impacting Operations

Legacy System Risks

- SLC 5/05 systems on Lines 2 & 4 have high probability of failure
- Vendor support ends December 2025 NO MANUFACTURER SUPPORT
- Replacement parts increasingly difficult to source
- Integration issues with newer plant systems

Process Inefficiencies

- Quality Control: 4 hours daily manual data entry creating bottlenecks
- Recipe Management: 45-minute changeover times vs. industry standard 15-20 minutes
- Alarm Response: 47-minute average response time vs. target 30 minutes
- Manual Override Events: 156 instances in Q2 indicating system limitations

Capacity Constraints

- I/O systems at 78% capacity limiting future expansion
- Network congestion during peak operations affecting real-time performance
- Limited diagnostic capabilities hampering troubleshooting

Integration Gaps Affecting Production

Manufacturing Execution System (MES)

- Manual work order processing creating production scheduling delays
- No automated integration with production planning systems
- Limited real-time production data visibility for management

Maintenance Operations

- No automated work order generation from system alarms
- Manual asset data synchronization causing maintenance delays
- Reactive maintenance approach due to limited predictive capabilities

2. Capacity Assessment & Production Impact

Current Throughput Limitations

System Capacity Analysis

- I/O infrastructure at 78% utilization EXPANSION LIMITED
- Communication bandwidth constraints during peak production
- Legacy HMI panels causing operator efficiency losses

Production Efficiency Gaps

- 12 process optimization opportunities identified, only 3 implemented
- Manual processes consuming 4+ hours daily of operator time
- Recipe changeover inefficiencies adding 25-30 minutes per changeover
- Quality control data delays impacting production decision-making

Automation Upgrade Potential

Immediate Efficiency Gains

- Eliminate 4 hours/day manual quality control data entry
- Reduce recipe changeover time from 45 to 20 minutes
- Implement automated alarm-to-work-order generation
- Enable real-time production monitoring and reporting

Advanced Process Control Opportunities

- Statistical Process Control (SPC) monitoring on critical processes
- Model Predictive Control implementation for key production loops
- Automated quality control data collection and trending
- Predictive maintenance integration for critical equipment

3. Technology Upgrade Recommendations

Phase 1: Critical Infrastructure Replacement (Q4 2025 - Q1 2026)

MUST-HAVE - Business Continuity

SLC 5/05 System Replacement

- Replace legacy PLCs on Lines 2 & 4 with ControlLogix platform
- Standardize programming environment across all systems
- Improve diagnostic capabilities and troubleshooting efficiency
- Business Impact: Eliminates high-risk single points of failure

Critical HMI Upgrades

- Replace slowest-performing operator panels
- Implement consistent user interface design
- Improve response times to <1.5 seconds
- Business Impact: Improved operator efficiency and reduced errors

Network Infrastructure Assessment

- Evaluate current Ethernet/IP backbone capacity
- Plan managed switch implementation with VLAN segmentation
- Business Impact: Foundation for future system integration

Phase 2: Integration & Standardization (Q2 2026 - Q3 2026)

HIGH-IMPACT - Operational Efficiency

HMI Standardization

- Complete operator interface consistency across all production lines
- Implement advanced alarm management with prioritization
- Add mobile device support for maintenance operations
- Business Impact: Reduced operator training time, improved response

MES Integration

- Automated work order processing and production scheduling
- Real-time production data collection and reporting
- Eliminate manual production tracking processes
- Business Impact: Improved production planning and visibility

Enhanced Communication Infrastructure

- Expand Ethernet/IP coverage to all production areas
- Implement managed switches with network segmentation
- Upgrade wireless infrastructure for mobile maintenance support
- Business Impact: Improved system reliability and maintenance efficiency

Phase 3: Advanced Analytics & Optimization (Q4 2026)

VALUE-ADD - Competitive Advantage

Advanced Process Control

- Implement Statistical Process Control monitoring
- Deploy Model Predictive Control on critical loops
- Automated process optimization recommendations
- Business Impact: Consistent product quality, reduced waste

Predictive Maintenance Systems

- Vibration monitoring on critical rotating equipment
- Thermal imaging integration for electrical systems
- Automated maintenance scheduling based on equipment condition
- Business Impact: 50% reduction in unplanned downtime

Safety System Enhancements (All Phases)

Emergency Stop Network Upgrade

- Replace DeviceNet-based system to eliminate single points of failure
- Implement redundant safety communication paths
- Business Impact: Improved safety system reliability

Safety Documentation Automation

- Automated safety system testing and documentation
- Digital safety interlock verification procedures
- Business Impact: Reduced compliance burden, improved audit readiness

4. Implementation Strategy & Timeline

Project Phasing Approach

Phase 1 (6 months): Foundation

- Month 1-2: Hardware procurement and engineering design
- Month 3-4: Programming and factory acceptance testing
- Month 5-6: Installation during planned maintenance windows
- Critical Path: Hardware lead times (8-12 weeks)

Phase 2 (6 months): Integration

- Can begin planning while Phase 1 is executing
- Parallel development of MES interfaces
- Staged implementation to minimize production impact
- Critical Path: MES integration testing

Phase 3 (3 months): Optimization

- Dependent on Phase 1 & 2 completion
- Advanced features added to stable platform
- Operator training and procedure updates
- Critical Path: Operator training and certification

Production Schedule Considerations

Shutdown Requirements

- Phase 1: Utilize existing planned maintenance windows
- Line 2 & 4 shutdowns coordinated with production schedule
- Parallel system operation during transition periods
- Emergency rollback procedures developed for each phase

Risk Mitigation During Implementation

- Maintain critical spare parts inventory (\$127K current value)
- Implement bypass procedures for emergency situations
- 24/7 vendor support during critical cutover periods
- Detailed testing protocols before production restart

Resource Requirements

Internal Team Commitment

- 1.5 FTE Controls Engineering for project management
- 2 FTE Maintenance Technicians during implementation phases
- Operations support for testing and validation
- IT involvement for network infrastructure and security

External Support Requirements

- Systems integrator for programming and commissioning
- Vendor specialists for training and system startup
- Electrical contractor for panel modifications and installation

Training Requirements

- 40 hours per operator for new HMI systems (all 3 shifts)
- Maintenance technician training on new diagnostic tools
- Engineering team training on advanced features
- Total Training Investment: 240+ hours across all personnel

5. Financial Analysis & Budget Framework

Investment Summary

Category	Phase 1	Phase 2	Phase 3	Total Range
PLC Hardware	\$180K-\$220K	-	-	\$180K-\$220K
HMI Systems	\$50K-\$70K	\$45K-\$55K	-	\$95K-\$125K
Network Infrastructure	\$30K-\$40K	\$35K-\$45K	-	\$65K-\$85K
Engineering & Implementation	\$75K-\$100K	\$50K-\$65K	\$25K-\$35K	\$150K-\$200K
Training & Documentation	\$15K-\$20K	\$10K-\$15K	-	\$25K-\$35K
Phase Totals	\$350K-\$450K	\$140K-\$180K	\$25K-\$35K	\$515K-\$665K

Return on Investment Analysis

Cost Avoidance

- Prevent production shutdown from SLC 5/05 failure: \$2M+ potential loss
- Reduce unplanned downtime by 50%: \$180K annual savings
- Eliminate manual quality control processes: \$85K annual labor savings

Efficiency Improvements

• Improve OEE from 94.2% to 97%: **\$420K annual production value**

Reduce changeover times by 25 minutes: \$65K annual efficiency gain

• Maintenance efficiency improvements: \$95K annual savings

Total Annual Benefits: \$845K+

Payback Period: 8-9 months after full implementation

Budget Flexibility Options

Minimum Viable Implementation (Phase 1 Only): \$350K-\$450K

- Addresses critical end-of-life risk
- Provides foundation for future phases
- Delivers immediate risk mitigation

Recommended Full Implementation: \$515K-\$665K

- Complete transformation with maximum ROI
- Positions plant for future competitiveness
- Addresses all identified operational inefficiencies

6. Risk Assessment & Mitigation

High-Risk Scenarios

SLC 5/05 Hardware Failure

- **Probability:** High (vendor support ends December 2025)
- **Impact:** Critical (Lines 2 & 4 production shutdown)
- Mitigation: Emergency spare parts, bypass procedures, accelerated Phase 1 timeline

Implementation Schedule Delays

- Probability: Medium (hardware lead times, resource conflicts)
- **Impact:** High (extended exposure to legacy system risks)
- Mitigation: Early hardware procurement, vendor partnerships, parallel work streams

Integration Complications

- Probability: Medium (mixing legacy and new systems)
- **Impact:** Medium (temporary performance impacts)
- Mitigation: Extensive testing protocols, vendor support, rollback procedures

Business Continuity Planning

Production Protection Measures

All changes during planned maintenance windows

- Parallel system operation during transitions
- Comprehensive testing before production restart
- Emergency bypass procedures for each system

Change Management Strategy

- Operator involvement in HMI design process
- Gradual feature rollout to minimize learning curve
- Comprehensive training program before go-live
- 24/7 support during initial operation periods

7. Expected Business Outcomes

Operational Excellence Improvements

Overall Equipment Effectiveness (OEE)

• Current State: 94.2% automation availability

Target State: 97%+ availability (industry benchmark)

• **Annual Impact:** \$420K+ additional production capacity

Maintenance Optimization

Current: 23 unplanned downtime events per quarter

Target: 50% reduction in automation-related incidents

Annual Impact: \$180K cost avoidance, improved schedule reliability

Process Efficiency

• **Current:** 4 hours/day manual quality control processes

Target: Fully automated data collection and reporting

• **Annual Impact:** \$85K labor cost reduction, improved accuracy

Competitive Positioning

Digital Manufacturing Readiness

- Real-time production monitoring and analytics
- Integration-ready platform for future Industry 4.0 initiatives
- Data-driven decision making capabilities

Mobile maintenance support and remote diagnostics

Regulatory Compliance Enhancement

- Automated documentation and reporting capabilities
- Improved audit trail and traceability
- Enhanced safety system monitoring and verification
- Reduced manual compliance burden

8. Implementation Success Factors

Critical Success Requirements

Executive Sponsorship

- Clear project authority and decision-making process
- Adequate resource allocation and budget approval
- Change management support across organization

Technical Excellence

- Experienced systems integrator selection
- Comprehensive testing and validation protocols
- Vendor support and warranty coverage

Organizational Readiness

- Operator training and change management
- Maintenance team skill development
- IT infrastructure and security alignment

Key Performance Indicators

Technical Metrics

- System availability improvement to 97%+
- HMI response time reduction to <1.5 seconds
- Alarm response time improvement to <30 minutes

Business Metrics

- OEE improvement to 97%+
- 50% reduction in unplanned automation downtime
- Elimination of manual quality control processes
- ROI achievement within 9 months

9. Recommendation & Next Steps

Executive Decision Required

Immediate Action Recommended: Approve Phase 1 implementation to begin Q4 2025

Justification:

- SLC 5/05 vendor support ends December 2025 CRITICAL BUSINESS RISK
- \$2M+ potential production loss from system failure
- 8-9 month payback period with clear ROI
- Phased approach manages cash flow and implementation risk

Next Steps Timeline

Week of August 29 (Post-Executive Review)

- Refine project scope based on executive feedback
- Submit formal capital expenditure request with detailed ROI
- Begin vendor selection and proposal process

September 2025

- Vendor consultations and detailed proposal evaluation
- Finalize project charter and governance structure
- Secure budget approval and resource allocation

October 2025

- Award contracts and initiate hardware procurement
- Begin detailed engineering design and programming
- Establish project management office and communication protocols

Q4 2025 - Q1 2026

Execute Phase 1 implementation

- Plan Phase 2 activities
- Monitor and report progress to leadership

Prepared By: Mike Chen, Controls Integration Manager

Technical Review: Tom Rodriguez, Plant Engineering Manager

Operations Approval: Sarah Martinez, Head of Operations

This assessment provides the technical foundation for executive decision-making on Plant 3 automation infrastructure upgrade. The recommended approach balances business risk mitigation with operational improvement opportunities while maintaining production continuity.